
Theor Chim Acta (1997) 95:13-34 Theoretica
Chimica Acta
© Springer-Verlag 1997

An integral direct, distributed-data, parallel MP2
algorithm

Martin Schlitz, Roland Lindh
Department of Theoretical Chemistry, Chemical Centre, P.O, Box 124, University of Lund,
S-22100 Lund, Sweden

Received May 7, 1996/Final revision received September 19, 1996/Accepted September 19, 1996

Summary. A scalable integral direct, distributed-data parallel algorithm for four-
index transformation is presented. The algorithm was implemented in the context
of the second-order Moller Plesset (MP2) energy evaluation, yet it is easily
adopted for other electron correlation methods, where only MO integrals with two
indices in the virtual orbitals space are required. The major computational steps of
the MP2 energy are the two-electron integral evaluation (9(N 4) and transformation
into the MO basis (9(0N¢), where N is the number of basis functions, and O the
number of occupied orbitals, respectively. The associated maximal communication
costs scale as (9(n~O2V N), where V and nx denote the number of virtual orbitals,
and the number of symmetry-unique shells. The largest local and global memory
requirements are (9(N 2) for the MO coefficients and (9(OV N) for the three-quarter
transformed integrals, respectively. Several aspects of the implementation such as
symmetry-treatment, integral prescreening, and the distribution of data and com-
putational tasks are discussed. The parallel efficiency of the algorithm is dem-
onstrated by calculations on the phenanthrene molecule, with 762 primitive
Gaussians, contracted to 412 basis functions. The calculations were performed on
an IBM SP2 with 48 nodes. The measured wall clock time on 48 nodes is less than
15 min for this calculation, and the speedup relative to single-node execution is
estimated to 527. This superlinear speedup is a result of exploiting both the
compute power and the aggregate memory of the parallel computer. The latter
reduces the number of passes through the AO integral list, and hence the operation
count of the calculation. The test calculations also show that the evaluation of the
two-electron integrals dominates the calculation, despite the higher scaling of the
transformation step.

Key words: Parallel - MNler-Plesset - Four-index transformation

1 Introduction

In recent years, advances in computer technology together with substantial im-
provements in quantum chemical algorithms have enabled ab initio electronic
structure calculations on chemical systems of increasing complexity. In 1989
Price et al. [1] reported a self-consistent field (SCF) study on C63HlI3NllO12,

14 M. Schlitz, R. Lindh

a derivative of the immuno-suppressive drug cyclosporine using a 3-21G basis set,
involving 1000 basis functions. SCF and MP2 calculations of similar or even larger
size have been carried out also for fullerene and some of its derivatives, although
making use of the high symmetry of these chemical systems [2-5]. Today, SCF
calculations including several thousands of basis functions [6-8], and coupled
cluster calculations with some hundred basis functions [9-11] are feasible. Com-
mon to all of these ab initio algorithms which aim at large-scale problems is that
they are integral direct in the sense that the electron repulsion integrals (ERIs) are
reevaluated whenever needed, rather than computed once, stored on disk and read
from disk when required. The use of integral direct methods is motivated by the
following observations:
(i) The limiting factor precluding many applications, imposed by the use of con-
ventional (non-integral direct) methods is the disk space, required to store the ERIs
((9(N 4) quantity with N denoting the number of basis functions).
(ii) Conventional methods inflict a heavy input/output (I/O) load on the machine.
Regarding the hardware development within the last decade, the advances
achieved in the design of faster CPUs are much more impressive than the improve-
ments, accomplished for I/O systems. This is especially true for local workstation
(clusters) and massively parallel processing (MPP) supercomputers.
(iii) Ongoing improvements in integral evaluation methods [12] such as integral
prescreening, reexpansion of Gaussian products in auxiliary basis sets, and split-
ting of Coulomb and exchange part with subsequent semiclassical treatment of the
Coulomb part are reducing the extra costs of evaluating the ERIs multiple times.

Integral direct methods were first used in SCF theory ("direct SCF" approach
by Alml6f et al. [-13], but have since been extended to methods like multiconfigura-
tional SCF [MCSCF] [14, 15], many-body perturbation theory [MBPT(2)] (the
cheapest method which includes dynamic correlation of electrons) [16, 17],
MBPT(2) gradients [18] and coupled cluster methods [9, 10]. In contrast to the
SCF method, where the ERIs over atomic orbitals (AOs), i.e. the basis functions)
are immediately contracted to the Fock matrix in AO basis, and only AO integrals
are needed, correlated methods including MCSCF are usually formulated in terms
of ERIs over molecular orbitals (MOs). This means in practice, that an integral
transformation of the ERIs in AO basis to the MO basis is required as an
intermediate step. A full 4-index transformation, carried out as four-quarter trans-
formations has a flop count that scales as (9(N 5) with the number of basis functions
N, and has (9(N 4) storage requirements. At a first sight these memory requirements
for integral transformation seem to rule out any integral direct implementation of
a correlated method. Fortunately enough, however, most correlated methods can
be reformulated in terms of AO ERIs and a reasonably small subset of MO
integrals. Such MO integral subsets typically have two indices restricted to the
occupied orbital space of dimension O, which is usually much smaller than N. For
example, the computation of the MBPT(2) energy only requires the exchange
integrals (ialjb), while for direct MCSCF theory the Coulomb (ijlpq) and exchange
(ipljq) MO integral lists are needed (Mulliken notation with i,j denoting occupied,
a, b virtual, and p, q any orbitals). The memory necessary to hold such a subset of
MO integrals is then (9(02N2).

In order to improve the performance and capacities of ab initio electronic
structure codes beyond current limits and to tackle grand challenge-class problems,
it has become increasingly evident during the last few years, that it is necessary to
exploit the inherent parallelism in existing algorithms and to maximize such
parallelism by abandoning and replacing certain parts of the algorithms, or even

An integral direct, distributed data, parallel MP2 algorithm 15

developing new algorithms from scratch. The class of parallel computer archi-
tectures most suitable for computational chemistry is the Multiple Instruction
Multiple Data (MIMD) category with multiple independent instruction threads
that operate on multiple, distinct data items (compared to the Single Instruction
Multiple Data (SIMD) class of machines with only a single instruction thread).
M I M D computers can further be subdivided with respect to their memory ar-
rangement: For shared-memory systems the common memory lies in the address
space of each processor, while for distributed-memory systems each processor has
fast access to its own local memory only, and access to non-local memory requires
explicit interprocessor communication. Portable message-passing libraries (with
MPI (message-passing interface) [19] as the emerging standard) are providing
support for these communications in distributed-memory systems; however all
interprocessor communication events have to be programmed explicitly into the
application code and the application programmer has to shoulder the burden to set
up a consistent and efficient communication scheme and to avoid e.g. deadlock
situations or data inconsistencies. The programming of shared-memory computers
is in general much easier, since each processor can have access to all data items of
the algorithm without any need for cooperation with other processors, although
some care has to be taken in order to avoid data access conflicts and to maintain
data integrity. On the other hand, the access of very many processors on a com-
mon, shared memory imposes a serious bottleneck. Therefore, virtually all M P P
systems are either explicitly of the distributed-memory type (e.g. IBM SPX, Intel
Paragon), or provide virtual shared memory (e.g, Cray T3D), what means that each
processor has its own local memory, but there is hardware support at various levels
for accessing the virtual, global address space. There are no genuine MP P shared-
memory systems available these days, which provide uniform fast memory access.
As a consequence, for good performance the application programmer should
distinguish between local (fast) and non-local (slow) memory access in his code.
This is nothing new, since in order to write efficient sequential code for ordinary
scientific workstations the programmer also has to be aware of on-cache and
off-cache memory access. MPP machines just augment these two different memory
classes by a third one (non-local memory), where access to is especially slow. The
use of message-passing libraries automatically enforces a distinction between
local and non-local memory. For those parallel algorithms, which are based on
replicated-data schemes (each processor owns its own copy of each data item)
the usage of message passing is a convenient choice to code up the necessary commu-
nication framework. For other algorithms however, which require a distributed-
data scheme explicit message passing can become cumbersome.

The majority of the present distributed parallel direct SCF codes replicate the
Fock and density matrices [20 28], which minimizes communication costs and
enables dynamic load balancing in a simple way. Such codes are well suited for
clusters of processors interconnected by slow communication links (ethernet, wide-
area networks) and with time-dependent load situations [25, 27]. However, rep-
licated-data schemes are inherently non-scalable, since the maximum problem size
still is limited by the local memory of a single processor, rather than the aggregate
memory of all processors together. Recently, some very efficient implementations
of truely scalable distributed-data SCF algorithms have been discussed in the
literature [29, 6-8], where the Fock and density matrices were fully distributed
over all processors of an M P P machine.

The development of parallel, integral direct algorithms for correlated methods
calls automatically for distributed-data algorithms, due to the hefty memory

16 M. Schiitz, R. Lindh

requirements of direct integral transformation. There have been a number of
parallel implementations of integral transformation and correlated methods, re-
cently reviewed by Harrison and Shepard [30]; however, most of these implemen-
tations were still disk based and not integral direct. M~rquez and Dupuis recently
reported an integral direct, distributed-data parallel implementation of the MP2
energy, based on explicit message passing [31]. This algorithm however suffers
from rather high-memory requirements ((9(0N3)) and communication costs
(g~(N*)). Due to these memory requirements the number of (occupied) MOs in the
first transformation index that can be dealt with in a single pass over the integral
list is normally very small and a large number of passes is required already for
medium-sized problems (about 150 basis functions). The parallel algorithm benefits
mainly from the enlarged aggregate memory when multiple processors are used,
reducing the number of necessary integral passes. This is especially evident for their
"super direct" version, where the most expensive part of the calculation, i.e. the
evaluation of the ERIs is replicated on each node, avoiding the costly (9(N 4)
communication of the AO integrals, what makes the algorithm non-scalable with
respect to the number of processors. Speedups were reported only for the relatively
modest number of 4 processors. A direct, distributed-data parallel implementation
of the orbital-invariant MBPT(2) theory was recently reported by Bernholdt and
Harrison [32]. This method involves the computation of the half-transformed
exchange integrals (iv]ja) and the iterative solution of the amplitude equation for
the double-excitation amplitudes t .~.~ in a mixed MO/AO representation, which ~J
greatly increases the spatial locality of the basis functions spanning the virtual
space. The dominant computational costs are ascribed to the construction of the
exchange operators (i.e. ERI evaluation and transformation) and the highest
communication costs ((9(03NZ)) occur while solving the amplitude equations.
Formidable speedups were reported on an MPP system with up to 160 computa-
tional nodes.

In the present paper, we describe a scalable, distributed-data parallel implemen-
tation of direct integral transformation for a restricted set of MO indices. This
algorithm is currently implemented in a conventional MP2 code (conventional in
the sense that a diagonal Fock matrix is used), and we describe specifically this
MP2 implementation. However, we want to emphasize here that our primary goal
is the development of a scalable algorithm for direct integral transformation, a
building block for parallel irnplementations of integral-direct CA SSCF and CASPT2
algorithms; work in this direction is already in progress [33]. The maximal commun-
ication costs of our integral-direct MP2 code are (9(MzOZN2), (M~ denotes the
number of symmetry-unique shells), whereas the computational step of highest
complexity, i.e. the transformation of the first index is (9(0N4). The largest integral
blocks, i.e. those which contain the integrals after three-quarter transformations and
the fully transformed MO integrals, are distributed over all computational nodes.
The communication framework is implemented on top of global arrays [34, 35],
a communication library which supports one-sided access to two-dimensional, dis-
tributed arrays by the use of interrupt-driven message passing on the IBM SPX, and
provides also mechanisms to take nonuniform memory access into account, at the
level of the application program. In order to exploit molecular symmetry and to
obtain maximal vectorization already in the first transformation step, the AO
integrals are symmetry-adapted prior to the transformation (---, SO integrals). All
subsequent integral transformation steps then are efficient vector operations on SO
integral symmetry subblocks, each identified by three irreducible representations
(irreps) of the molecular point group.

An integral direct, distributed data, parallel MP2 algorithm 17

Very recently and independently from our work, Wong et al. (WHR) developed
an efficient, distributed-data parallel direct four-index transformation scheme [36],
based on similar ideas as is the present algorithm. However, there are significant
differences to our algorithm. Moreover, no attempts were made to exploit molec-
ular symmetry.

In the following section we first outline briefly the computational problem and
describe the sequential form of our algorithm, which was implemented in different
variants. In Sect. 3 we discuss the data and task distribution of the parallel
algorithm. In Sect. 4, preliminary data on the performance of the algorithm is
presented and analysed.

2 The sequential algorithm

2.1 Computational problem

The MP2 contribution to the correlation energy for a closed-shell system can be
written in spin-free formalism as

E (2) = ~ (iaIjb)2 + ½[(iatjb) - (ibija)]2 (1)

i , j , a , b ~i "~- ~ j - - ~'a - - '~b

where i, j and a, b denote occupied and virtual, canonical MOs, respectively, and
ei, ~j, e,~, eb the corresponding eigenvalues of the Fock matrix. The MO exchange
integrals (ialjb) are computed from a transformation of the AO or SO ERIs over
restricted MO index ranges, i.e.

(ialjb)= ~ CuiCv, C,jC~b(#Vi2a), (2)
/ / , V, .~, O"

where, in the present context,/~, v, 2 and o- denote SOs, and the MO coefficient
matrix C transforms from the SO to the MO basis. In order to keep the flop count
as low as possible the integral transformation usually is carried out in four
subsequent steps, with one index transformed after the other. In the following we
will refer to the transformation of the 1st, 2nd, 3rd and 4th index as the Q1, Q2, Q3
and Q4 step, respectively. Accordingly, the QI block contains the integrals (ivl2~r),
the Q2 block the integrals (ia[2a), and so on, while the SO block comprises the
untransformed SO integrals (/~vt2a). Using this notation, the Q1 step, scaling as
C(ON 4) with the problem size, dominates the integral transformation. The evalu-
ation of the SO ERIs requires (9(N 4) floating point operations (flops). Antisym-
metrization and summation according to Eq. (1) are all C(02N 2) and not rate
limiting.

The main obstacle in direct integral transformation schemes is the vast amount
of memory, which is necessary to hold the partially transformed ERIs. For
example, the Q1 block after full completion of the Q1 step requires (9(ON 3)
memory, as in the algorithm presented by Mfirquez and Dupuis [31]. In direct
transformations with two indices limited to the occupied orbital space as for MP2
energy calculations, this can be reduced to (9(02N2), if the Q2 and Q3 steps already
are carried out, before all SO integrals for the Q1 step are generated [16, 17].
Furthermore, if the available memory still is exceeded, it is possible to segment the
first MO index range with the limiting case of a single i and the corresponding
memory requirement of C(ON2). However, this implies multiple passes through

18 M. Schtitz, R. Lindh

the integral list (worst case: O), thus it is desirable to have as large segments of i
as possible.

2.2 5~quential implementations

The integral direct MP2 algorithm presented here does not fully utilize the
permutational symmetry of the ERIs: #w--~2cr is not exploited. For a sequential
integral direct implementation the higher memory requirements of such algorithms
as proposed by Werner and Meyer [37] would imply (i) multiple passes over the
integral list, and (ii) considerable loss in vectorization for the integral transforma-
tion steps. Furthermore, these algorithms are not well suited for parallel implemen-
tation as discussed by Wong et al. [36].

The skeleton of our integral direct MP2 algorithm, as outlined in Fig. 1, is
similar to the one described by Head-Gordon et al, [17]: The outermost loop is
segmenting the first MO index range in as large chunks as possible (given by the
available memory) and determines the number of passes through the integral list.
The next four nested-loop structures each run over symmetry-unique shells. An SO
ERI batch then is defined by a symmetry-unique shell quadruple and comprises the
evaluation of all AO ERIs belonging to those shell quadruples, generated from the
symmetry-unique ones by application of the double-coset representatives [38]. For
the computation of the AO ERIs routines from the SEWARD integral generator

Loop partitioning 1st MO index i ... batches I

op over unique shells Z
1

Loop over unique shells A~Z

~ op over unique shells N

i f - - ,
I I ~ L o o p over unique shells M_<N
| [I [compute SO integrals (gvl%c9 batchwise
[I I~ for ge Mand move them to SO block

! [resolve g,v triangularity
I[SO--> Q1 (ieI, Vg, veN)
| l (%olv,g) --> (Zzlv,i) (DGEMM)
L ()~61v~ M,g) --+ (Loli,g) (DNAXPY)

Q1 --> Q2 (Va, Vv)
• ~ (~crliv) --~ (~xylia) (DGEMUL)

~lve ;~,~ triangularity
--~ Q3 (j<i, V~, o'~ Z)
(iat~,~,) -~ (ialo,j) (DGEMM)
(ialG~ A,~,) -~ (ialj,~,) (DNAXPY)

Q4 (Vb, VG)
jo) --> (ialjb) (DGEMUL)
lte partial E2 energy a.o, for MO subrange I

Fig. 1. Nested loop structure of the
sequential MP2 algorithm (variant
[(/~eev), (2~-+~)], which exploits the
permutational symmetry of both pair
entities). The outermost loop is
segmenting the first MO index range in as
large chunks as possible (which is given
by the available memory) and determines
the number of passes through the AO
integral list. The next four nested loop
structures each run over symmetry-
unique shells

An integral direct, distributed data, parallel MP2 algorithm 19

Table 1. Memory requirements for the different ERI blocks during the different stages of the direct
integral transformation, c¢ fl, ~ denote irreps, N ~ and S~: are the total number of SOs and the number of
SOs within the symmetry-unique shell K, which belong to irrep ~. U and O ~ denote the number of
occupied MOs in the first (ev. segmented) and third index, respectively, while V ~ stands for the number
of virtual MOs, all corresponding to irrep e. The second entry for the SO and Q2 block corresponds to
the algorithms with segmented QI or Q3 step. The order of the flop count of the related step and the
locality of the data for the parallel implementation are also indicated

IBlk. Shells fixed Req. m e m Flop count Locality

SO 3 ; 4 ~¢7"'ar~®0®'~caS~'oXOA N, Z.,~a~V" S~®a®re.StJC~M oz Ao N (9(N 4) Local

Q1 2 v N~®~®~t~'S~S t~ ~)(ON*) Local Z.~ ~//~, r A

X-" S~®t~eTVOFS~. (9(OV N s) Local Q2 1 ; 2 ~',~ts~ N~®o®~V~FS};/~1~:' A
Q3 0 ~.~,~,N~®I~®'~O~Vt~I ~ 6)(OZVN 2) Global

Q4 ~=ts~ V=®e®~ O=Ve I~ (O(02V 2 N) Global

[39] are used. As in Ref. [173 the Q2 and Q3 steps are performed before the Q1 step
is completed, yet we prefer to generate all SO ERI batches for a fixed, symmetry-
unique shell triplet before the corresponding Q1 step is performed, and further-
more to produce all half transformed integrals for a single fixed, symmetry-unique
shell index before the corresponding Q3 step is carried out. This increases the
vector length at the cost of extra memory for the SO and Q2 blocks. However, since
the memory, allocated by the SO, Q1 and Q2 blocks in the previous steps, all is
reused for the Q4 block during the Q4 step, which consumes the largest amount of
memory anyway (the Q3 + Q4 blocks are involved here), this is of no further
consequences. Table 1 shows the memory requirements for the individual ER]
blocks.

We have implemented several distinct variants of the algorithm. The first one,
which is schematized in Fig. 1, takes advantage of the triangularity of the indi-
vidual pair entities, i.e. it utilizes #~--~v and 2+-~o- permutational symmetry of the
SO integral (~vl2a). A single Q1 or Q3 step for an individual symmetry subblock
then consists of one DGEMM (matrix multiply/add) and SK(N -- Sv,)O DAXPYs
(matrix scale/add) operations (with AT, SK and O having the same meaning as in
Table 1), while the Q2 and Q4 steps are simple matrix multiplications
(DGEMULs). As already mentioned above, #w-+2a permutational symmetry
cannot be exploited in the present transformation scheme: because the shell indices
X and A are fixed the Q1 block contains no integrals (#v[kr) or (pv[~i) with/~,
vCZ, A. Hence, in a single pass through the integral list the non-redundant ERIs are
effectively computed twice. For further reference in this paper we introduce here the
label [(#+-~v), (2~--~a)] for this variant of the algorithm.

If/~-+v permutational symmetry is abandoned, the DGEMM and DAXPY
operations of the Q1 step can be replaced by a single DGEMUL, which results
in improved vectorization of this step, although at the expense of evaluating the
non-redundant ERIs effectively four times. Since the Q1 step comprises ~o(ON 4)
flops, while ERI evaluation is "only" (9(N*), this is not unattractive at a first sight,
especially for systems with a large number of atoms, and we use the label [(W(+ v),
(2~-,a)] for this version of the algorithm.

Furthermore, since the Q2 step does not include any DAXPY operations,
the Q3 step can be carried out immediately after the Q2 step for the subrange 2 e A
(Fig. 2). This reduces the vector length in the Q3 step, but also reduces the size of

20 M. Schiitz, R. Lindh

Fig. 2. Nested loop structure of the
sequential MP2 algorithm (variant
([(/~v), (2~cr))]~o~Q3), which exploits
the permutational symmetry of both pair
entities, and performs a segmented Q3
step, i.e. over 2 ~ A, rather than V2). The
outermost loop is segmenting the first
MO index range in as large chunks as
possible (which is given by the available
memory) and determines the number of
passes through the AO integral list. The
next four nested loop structures each run
over symmetry-unique shells. The shaded
region corresponds to a parallel task,
which is defined by the symmetry-unique
she11 doublet (E, A ~< ~)

the Q2 block (cf. Table 1), what is essential for the distributed parallel algorithm,
as pointed out in Sect. 3. This version, which exploits triangularity of both pair
entities, is denoted as [(#~-~v), (2~--~a)]~eg(o3).

Table 2 compiles timing results of the three different variants of the algorithm
for calculations on s-tetrazine (CzHzN~, Dzh symmetry, 406 primitives, 94 contrac-
ted functions, 30 correlated electrons), and phenanthrene (C14.H lo, Czv symmetry,
(672 primitives, 216 contracted functions, 94 correlated electrons). The correspond-
ing CPU times for the disk-based MP2 algorithm are also included, for compar-
ison. For the phenanthrene calculation, using a workspace of 12 MW (double
precision), two integral passes were necessary and only the timings of the first one
are given. From Table 2 the following is evident:
(i) The total time for integral direct MP2 energy evaluation is entirely dominated
by the generation of the ERIs (tint), i.e. 99% and 98% for s-tetrazine and phenan-
threne, respectively. Hence, the large prefactor of the (9(N 4) flop count for ERI
evaluation outweighs the (9(ON 4) dependence of the Q1 step. A similar behaviour
was reported by S~ebo and Alml6f for their implementation [16].
(ii) The ratios q,t (direct)/qm(disk-based) are as expected, i.e. somewhat less than
2 for the [(#+-+v), (2+-~a)] implementations, and somewhat tess than 4 for the
[(/~+/;v), (2~-+c7)] version.
(iii) The total time spent for the four transformation steps is dominated by the Q1
step (tQt). The gain in vectorization achieved when #+-*v permutational symmetry
is abandoned, decreases to1 by a factor of about 2. However, since qnt dominates

An integral direct, distributed data, parallel MP2 algorithm 21

Table 2. CPU times (in s) for the different sequential ver-
sions of the integral direct MP2 algorithm, obtained on an
IBM RS/6000 590. The CPU times are split into the indi-
vidual contributions of SO ERI evaluation (Gd, and the Q1,
Q2, Q3, Q4 transformation steps, respectively. Timings from
calculations on s-tetrazine (406 primitives, 94 contracted
functions, 30 correlated electrons) ° and phenanthrene (672
primitives, 216 contracted functions, 94 correlated elec-
trons) h are given. The corresponding CPU times for disk
based MP2 energy evaluation are also given, for comparison

s-tetrazine Phenanthrene

Symmetry D2h C2v
N/O 94/15 216/47
Passes 1 2

ti~t 684.9 9960.2
tQ1 5.4 159.6
tQ2 0.4 15.3
tQ3 0,4 18.4
to4 0.0 5.3

E(~'+~), (~)]
t~,, 1226.6 19362.2
to1 2.3 93.5
tO2 0.3 15.7
tQ3 0.2 26.4
to4 0.0 7,0

t~,,~ 684.4 10166.5
tQ 1 5.1 143.7
tQ2 0.4 15.0
to3 0.8 62.3
to~ 0.0 7.2

Disk based
t~,~, 387.6 5772.6
tQ~-4 4.16 417.9

~ANO contracted as H(8s4p/2slp), and C,N(14sgp4d/
3s2pld) [44] (real spherical representation)
u ANO contracted as H(7s/2s), and C(lOs6p3d/3s2pld) [45]
(real spherical representation)

the whole calculat ion, the [(#~--~v), (2~--~cr)] var iants are definitely more attractive.
(iv) Per forming a segmented Q3 step immediate ly after the Q2 step rather than to
complete the Q2 step for V2; a E N and to execute the Q3 step for the whole
2 range, increases tQ3 by a factor of abou t 2-3. However, since tQ3 is insignificant
anyway, this is no t harmful.

Fo r the two chemical systems considered in Table 2 the first i terat ion of a
direct SCF calculat ion takes 358 and 4614 CPUs, respectively. The differences in

22 M. Schiitz, R. Lindh

execution time between direct SCF and disk-based integral generation are mainly
due to better prescreening rates in the case of the direct SCF, since densities can
also be taken into account for the calculation of the screening criterion. Moreover,
since the two-electron part of the Fock matrix is constructed directly in the AO
basis, there is no need for symmetry adaptation of the ERIs. Anyway, the MP2
energy is obtained for an additional fraction of the cost of the preceding direct SCF
calculation.

2.3 Molecular symmetry

The efficiency and memory requirements of two-electron integral transformation
benefit substantially from exploitation of molecular symmetry. As already men-
tioned above, our codes symmetry-adapt the AO ERIs in a preceding step, and the
Q1, Q2, Q3, Q4 steps transform from SO to MO indices. The SO, Q1, Q2, Q3 and
Q4 blocks are decomposed into individual 3L-subblocks, each uniquely defined by
three symmetry labels L~, i = 1, . . . , 3, formed from the irreps F~, i = 1, . . . , 3 of the
molecular point group G __ D2h, which belong to those indices, not being trans-
formed in the next step: The first label L1 is defined as the direct product
F1 ® Fz ®/'3 of all three irreps F/, i = 1, . . . , 3, and is equal to the irrep, which
represents the index that is transformed in the next step. The second label La is
formed as the direct product/ '1 ® F2 of only two irreps, while the last one L3 is
equal to the first irrep F1 (cf. Fig. 3).

The distinct 3L-subblocks are then transformed independently by DGEMULs
or DGEMMs and DAXPYs, addressing contiguous memory within the corres-
ponding source and target 3L-subblocks, as indicated in Fig. 3 for the Q1 step.
This allows for efficient use of cache memory without any need for inter-
mediate buffering. The maximum number of 3L-subblocks is g 3, where g is the

i

v ~ ~ i

SO

v~c~

i

L,: <®R®L = < L,: r,®ro®E =

= ro®% h: <®L

h=< h:<

T

V

a

Q1

Fig. 3. Schematic representation of the Q1 step for a SO 3L-subblock. The SO and the corresponding
target Q 1 3L-subblock both are defined by three labels L~, L2, L3, formed from the irreps of those SOs
(MOs), which are not transformed in the current step. During the transformation, contiguous memory
(shaded area) in the target Q1 3L-subblock is addressed, allowing for efficient use of cache memory.
After the transformation, the Q1 3L-subblock is transposed, in order to expose v as the fastest index for
the Q2 step

An integral direct, distributed data, parallel MP2 algorithm

jai (3L,) jai (3L~) jai (3L~) jai (3L4)

23

b

n o a e u n o a e ! n o a e z n o d e 3

Fig. 4. Schematic representation of a 1L-subblock, which is distributed evenly over different nodes
(global array). The 1L-subblock, defined by the single irrep L1, contains aI13L-subblocks with the same
leading dimension NL. The boundaries of the 3L-subblocks usually do not coincide with the bound-
aries of the local patches of the 1L-subblock

order of the group G. Individual 3L-subblocks with the same direct product
L1 =/ '1 ® F2 ®/ '3 all have the same leading dimension NL, and are gathered into
a single 1L-subblock with symmetry label L1 and leading dimension NL,. The
maximum number of such 1L-subblocks. is 9- Individual 3L-subblocks form
column blocks within the corresponding 1 L-subblocks (cf. Fig. 4). This grouping of
3L-subblocks is of no further importance for the sequential codes, but is used for
the distribution of the data in the parallel algorithm, as discussed below.

2.4 Integral prescreening

For generally contracted ANO-type basis sets [40], it is advantageous to prescreen
ERIs in the uncontracted AO basis, since all contracted functions of a shell share
a common set of Gaussian exponents. Hence, prescreening in the contracted basis
would imply that even if most of the contracted ERIs of a given shell quadruple
could be neglected, still all primitive ERIs would remain to compute. The size of an
individual ERI can be estimated using the Cauchy-Schwarz inequality

I(c~HI~,6) I ~ I(cq7 loop)'/~ I(76176) 1 ~/~, (3)

where ~, fl, 7, ~ are primitive basis functions in the present context. If ER!
prescreening is performed at the level of primitive functions, care has to be taken
that the resulting computational overhead does not become too large. For this
reason the prescreening in our codes is done on pair entities P(e]3) in a k 2
(two-index) setup loop over (c~fl) before the k 4 loop structure for ERI generation
and transformation is entered. The result of the prescreening in the k 2 loop is a cut
down of the range of the compound index ~-(c~fl), and of the vectors containing the
pair entities P(~), which are used later in the k 4 loop for the evaluation of the ERIs.
Moreover, all the memory, allocated for the Cauchy Schwarz integrals (~131~/~)
during the prescreening of the pair entities, can be released again before entering
the k 4 loop structure. The actual prescreening criterion U(c~,fl, 7, 3) for the

24 M. Schfitz, R. Lindh

primitive ERI (c~fl176) is computed as

U(~, fi, Y, 6) = max(c~,/x e M) max(c~, v e N)l(~fllcq~)l I/2

× max(c~,~, VT, V2) max(c~, Vr, Va) max{t(yrl76)l l/z, Vy, Vr},
(4)

where #, v, 2, a denote contracted AOs here, M, N are shells, and c,,, c~, c~z, c~, are
contraction coefficients. In Eq. (4), max(c~,,/2 E M) stands for the maximum value
of c~, for a given primitive c~ over all contracted functions #, belonging to shell M.
On the other hand, max(cry, VT, V2) means the largest contraction coefficient over
all primitives and contracted functions of all shells.

Besides the ERI prescreening scheme described above, there is an additional
screening of SO integrals before the Q1 step of the transformation is performed.
Near zero row-blocks over subranges of # are removed from the corresponding SO
3L-subblock and the related MO coefficient matrix is reduced accordingly. This
improves the efficiency of the Q1 step for extended systems with low symmetry,
although is not crucial for the overall performance of the code.

3 The distributed parallel algorithm

The major goals that are to achieve for scalable parallel algorithms are to exploit
the computational power as well as the aggregate memory, which both increase
linearly with the number of processing nodes. This is particularly true for direct
integral transformation algorithms, where there is a direct dependence of the
execution time on the available memory, as discussed in the previous section.
Exploiting both the combined processing and memory resources of a parallel
computer for such algorithms implies, that superIinear speedups can be obtained, as
shown below, and in Refs. [31, 36]. In the previous section it was demonstrated
that the computationally dominant step in the calculation manifests in the evalu-
ation of the AO ERIs (cf. Table 2). The Q1 step, due to its fifth power dependence
on the system size, may become important for extended systems with many
electrons. It is therefore important to distribute the evaluation of the AO ERIs and
the Q1 step efficiently over all computational nodes. Furthermore, from Table 1 it
is evident, that the memory requirements are dominated by the Q3 and Q4 integral
blocks, which both depend quadratically and N (number of basis functions) or
V (number of virtual orbitals), whereas the SO, Q1 and Q2 blocks (for the [(#+--~v),
(~,e-~gr)]seg(O3) version) are only linear in these entities. It is thus essential to
distribute the Q3 and Q4 blocks over the bulk memory of all the nodes, while the
SO, Q1 and Q2 blocks can be kept in local memory of each individual node.

3.1 Data distribution and global arrays'

Our distributed parallel implementation of integral direct MP2 derives from the
[(//+-~V), (.'~+-~O')]seg(Q3) variant of the sequential algorithm, which was discussed in
the previous section (cf. Fig. 2), yet triangularity of the MO indices i and j is not
exploited. This facilitates the distribution of the Q3 and Q4 blocks, although at
the expense of a factor of two in the memory requirements of these entities. The SO,
Q1, Q2 blocks and the MO coefficients are private to each computational node,
whereas the Q3 and Q4 blocks are distributed evenly over all nodes, using the

An integral direct, distributed data, parallel MP2 algorithm 25

concept of global arrays. We note here that the inclusion of the Coulomb integrals
into this transformation scheme would inflict only minor additional requirements
for local (non-distributed) memory, i.e. 6~(IOSxSA).

Due to molecular symmetry the Q3/Q4 blocks are decomposed into g3 3L-
subblocks, where g is the order of the molecular point group. Since the maximum
number of these 3L-subblocks can become rather large (e.g. 8 .8 .8 = 512 in the
case of D2h symmetry), distributing individual 3L-subblocks would impose sub-
stantial administrative overhead: 2g 3 global arrays would have to be created and
controlled. For this reason, all 3L-subbtocks with the same leading dimension are
collected into a single 1L-subblock, as described in the previous section, and the
distribution of the Q3/Q4 data is done at the level of these 1L-subblocks, resulting
in a total of 29 distinct global arrays. Individual 1L-subblocks are distributed
evenly over all nodes with each node holding a column-block of the original
1L-subblock in local memory (cf. Fig. 4). Note that the boundaries of such a local
patch of a global array usually do not coincide with the boundaries of the
3L-subblocks, which also form column-blocks within the corresponding
1L-subblock.

The underlying communication framework to access remote patches of global
arrays is built on top of the Global Array (GA) toolkit of Nieplocha et al. [34, 35].
This toolkit provides a virtual "shared memory" programming model for two-
dimensional arrays, yet non-uniform memory access is not hidden from the
application program. One-sided access to remote patches without any need for
cooperation between the computational threads on the data-requesting and
the data-owning nodes is provided either by forking a shared-memory dataserver
on each node, or by installing a data serving interrupt handler, as is the case on the
IBM SP2, which allows for interrupt driven message passing. One-sided access of
remote data eliminates unnecessary synchronization between nodes, implying
enhanced performance relative to conventional message-passing schemes. A num-
ber of one-sided communication/operation primitives like "get", "put", "accumu-
late", "atomic read and increment", "gather" and "scatter" are provided with the
toolkit.

In cases of high-symmetry and large basis sets, i.e. if there are centers with four-
or eightfold degeneracy, it can happen, that for certain shells the size of the entire
SO, Q1 or Q2 blocks, as defined in Table 1, exceeds the available local memory. In
such cases, a first step is to perform the Q1 step immediately after the generation of
the SO integrals (four shells fixed), rather than to postpone this step, until all SO
integrals are generated for a fixed shell triplet. This cuts down the size of the SO
block at the expense of vector length in the Q1 step. Note, that the Q1 block cannot
be reduced in a similar way, i.e. by keeping three shells fixed rather than two,
without abandoning #~--~v permutational symmetry. An alternative way to reduce
the size of the SO, Q1 and Q2 blocks altogether, is to redefine those symmetry-
unique shells K, which are critical: Functions belonging to such shells are decon-
tracted, part of the evaluation of the ERIs is performed in the primitive basis, and
the contraction matrices are absorbed into the MO coefficient matrix. For
exaraple, for a d-shell with three contracted functions the size of the shell Sd then
reduces from 15 to 5, and the related SO, Q1 and Q2 blocks decrease by factors of
27 and 9, respectively. No redundant evaluation of primitive ERIs is imposed;
however, the transfer equations [39] are now partly applied in the primitive, rather
than the contracted basis, making that part of the ERI evaluation less efficient.
Note, that, if at all, only few critical shells (usually those with highest angular
momentum, belonging to few, critical centers) are decontracted, in order not to

26 M. Schfitz, R. Lindh

blow up the number of basis functions N, and to keep ERI evaluation as efficient as
possible.

3.2 Task distribution and load balancing

ERI generation and transformation up to the Q3 step are split up into individual
tasks, which are distributed over the computational nodes and executed in parallel.
A single task, indicated as shaded area in Fig. 2, corresponds to a single, symmetry-
unique shell doublet 2;, A ~< X, and loops over all symmetry-unique shells
N, M ~< N. Hence, if the number of symmetry-unique shells ~v is denoted by nx,
then the number of individual tasks is equal to nx(nx + t)/2, and grows quadrati-
cally with increasing size of the chemical system under study. For the rather modest
calculation on phenanthren (cf. Table 2), the number of tasks amounts already to
351, which is sufficient for reasonable load balancing on a fair number of nodes.
Note, that the use of #w-~2o- permutational symmetry would lead to a different
number of symmetry-unique shell doublets N, M for each task, thus to completely
inhomogenous task lengths (i.e. task flop counts).

According to Fig. 2 a single task comprises the generation of all ERIs with fixed
2;, A, and the subsequent transformation of three indices (two occupied, one
virtual). The ERI generation, and the Q1 and Q2 transformation steps involve no
interprocessor communications at all, since the whole SO, Q1, Q2 blocks and MO
coeffÉcient matrix are all local to each node. The Q3 step though requires write
access to the global Q3 arrays: the actual, segmented transformation is carried out
using local buffer space of size (9(IVO), with a subsequent one-sided "accumulate"
to the proper patches within the global Q3 arrays. All the memory, used before for
ERI evaluation, SO and Q1 block, is reused again for this local Q3 buffer. Due to
the one-sided character of the Q3 accumulate operation, all tasks are executed
asynchronously and the first synchronization point is arrived not before all ERIs
are generated and the Q3 step is completed. The communication costs in the Q3
step are formally (9(n~O 2 VN), however, substantial savings can be achieved, when
locality of Q3 data is exploited (see below). Note that in difference to the algorithm
of WHR [36] the Q3 step is performed here before the full set of Q2 integrals is
generated, with the consequence that the Q2 integrals still can be kept in local
memory. This is especially valuable in the context of super-CI-based MCSCF
algorithms, where only a very small subset of MO integrals (three indices in the
active space) is required [41]. For such an algorithm the actual communication
costs of the transformation decrease to (9(nxA3N) with A < O.

Figure 5 schematizes the general structure of our distributed parallel MP2
implementation: in a preliminary step before the k 4 loop is entered, each node
creates a private task list by enumeration of all symmetry-unique shell doublets
2;, A ~< 22. This task list is sorted afterwards with respect to a task criterion, which
depends (i) on the assessed task length (i.e. long tasks have priority, while short
tasks are used for padding towards the end), and (ii) on the locality of each task.
The individual task length is estimated by the number of primitive pairs that
belong to the corresponding t;, A ~< 2; shell doublet. Since the prescreening of ERIs
is based on primitive pair entities, and is already accomplished at that point (see
above), the estimate of the task length is actually based on the genuine number of
primitive pairs that remain after the prescreening. We note also, that the mechanism
to decontract some critical shells, as outlined above, splits some large tasks into
smaller pieces. As a side-effect, this improves also the load-balancing, since a

An integral direct, distributed data, paralIel MP2 algorithm 27

t Meta Loop partitioning 1st MO index i ... batches I
setup private tasklist (sorted w.r, localization Q3 blks.)

ILI1E (°vtsek r_n V eleummf;2t 2 ;~i vP r at; a:2s t k~ :skit ist)

sk_num still available on GLOBAL tasklist)
erve tsk_num on GLOBAL tasklist
tsk cnt = 0

i i i I I ,vet unique shells AN2;
Ill II ;k_cnt)

k L e Q3 integrals to global Q3 array

Transpose global Q3 blocks: Q3 --> TQ3
TQ3 -~ Q4 (Vb, Vff)

(iaij~) ---> (ialjb) (global matrix multiplication)
compute partial E2 energy a.o. for MO subrange I

Fig. 5. Nested loop structure of the
parallel MP2 algorithm. The outermost
loop is segmenting the first MO index
range in as large chunks as possible
(which is primarily given by the available
aggregate memory of the MPP system)
and determines the number of passes
through the AO integral list. The
WHILE/IF construct trys to register the
next task number of the private task list
with the GLOBAL task list. After
successful registration, the usual nested
loop structure over symmetry-unique
shells is entered, and the corresponding
task is executed. The shaded box in the
figure represents the shaded area of Fig. 2

larger number of small tasks for padding towards the end of the task list then is
available.

The task locality, on the other hand, is defined as the ratio of the summed up
sizes of the local Q3 patches, and the total Q3 patches, which will be accessed by
a given task. The position of a given task in the list then reflects its priority for
a given node. Task lists of different nodes usually look pretty different. Each node
then works its way through its private task list, fetching the next task number
(tsk_num) and tries to reserve it on the global task list. The global task list is held in
a global array and accessed by the individual nodes using "atomic read and
increment" operations. A given task is interpreted as already reserved by another
node, if the corresponding read out is different from zero. After successful reserva-
tion of a task on the global task list the k 4 loop is entered and the corresponding
task (shaded area in Fig. 5) is executed. When a node has finally reached the end of
its private task list, it arrives at a synchronization point (barrier), which is necessary
to ensure data consistency, before the Q4 step is performed. The mechanism of
reserving individual tasks in a specific order on a global task list allows for dynamic
load balancing in a "self-service" way, without any need for a special master or
control process. Moreover, giving the tasks a priority relative to the locality of the
data, which will be accessed, renders savings in interprocessor communications.

Before the Q4 step is performed, it is advantageous to transpose the individual
Q3 3L-subblocks from (jai, or) to (a, jai), so that the last remaining SO index a
becomes the fastest. The succeeding Q4 step is then completely local, carried out as

28 M. Schiitz, R. Lindh

local DGEMULs for each local slice of the individual Q3 3L-subblocks, without
any interprocessor communications involved, at all. This transpose can either be
performed on the fly immediately after the segmented Q3 step by replacing the
blockwise "accumulate" operations of the local Q3 buffer to the global Q3 array by
"scatter/accumulate" operations, or alternatively, as separate "scatter" operations
after completion of all tasks, when the whole set of Q3 integrals is generated. The
communication costs for the former are (~(nzOZVN) (which have to be spent
anyway for the accumulate), while for the latter an extra expense O(02VN) is
imposed. On the other hand, "scatter" operations are at least twice as expensive
as simple "get", "put" or "accumulate" operations, since two supplementary index
arrays have to be transmitted in addition to the actual data. Furthermore, "scatter"
operations imply also a rather expensive sorting of the data with respect to the
corresponding target processor ID, in order to bundle data items targeting the
same processor and so to avoid latency. We note here in passing that a regular sort
algorithm as included in the GA tools (version 2.1), with the number of compares
depending on the number of sort items n as (9(n log(n)), is suboptimal for the sort
problem in the "scatter" and "gather" operations. In the context of the present
work this was replaced by a more efficient algorithm, based on exchanging items
along corresponding permutational cycles, which scales linearly with a very small
prefactor and outperforms the regular sort by a factor of 10-20 for 106 items.

Considering the costs of a "scatter" operation, it is clear that the second variant
of the transpose minimizes the expenses for communication. Moreover, the locality
of the blockwise "accumulate" after a segmented Q3 step is not destroyed.

A further alternative would be to proceed directly to the Q4 step, omitting the
intermediate transpose. The Q4 step is non-local in this case, inflicting communica-
tion costs (9(pO2V 2), where p is the number of computational nodes sharing an
individual Q3 3L-subblock (local presummation over the slowest ~r SO index on
each processor with subsequent blockwise "accumulate"). Yet, no expensive "scat-
ters" are required. Moreover, if there is symmetry, the number of processors
p sharing a common Q3 3L-subblock is usually only a small subset of the whole
processor range, with most processors operating in parallel on different Q3 3L-
subblocks. Hence, this third alternative may be most efficient for high-symmetry
cases and/or a modest number of computational nodes. In the present work all
three variants have been implemented and explored; the relative performance is
discussed in the next section.

The one-sided character of either the "scatter" or "accumulate" operation ensure
asynchronity of the computational threads for both the intermediate transpose and
the Q4 step, yet two (one) further barriers, i.e. after the transpose and the Q4 step are
needed to guarantee data consistency. However, only the first synchronization after
completion of the private task list has significant effect on the parallel efficiency of
the transformation, since it reflects the granularity of the individual tasks. After
that, the individual computational threads are essentially synchronized anyway.

Among the remaining steps necessary to compute the MP2 energy according
to Eq. (1) only the antisymmetrization of the MO ERIs needs some considera-
tion, the rest is straightforward. The most compact way to accomplish the anti-
symmetrization is of the form

d (ialjb) = (jb l ia) - (ja] ib), (5)

where j is the fastest index. The antisymmetrization then proceeds over common
contiguous blocks of length O (i.e. index j). Due to the segmentation of the index i, it

An integral direct, distributed data, parallel MP2 algorithm 29

is not possible to perform the antisymmetrization over a common virtual leading
index, e.g. as d(ialjb) = (bj]ai)- (bit@ with contiguous blocks of length V. For
every Q4 3L-subblock, each node performs the antisymmetrization for its own
local share of UbI ia) ERIs, requesting the related (ja[ib) integrals from the corres-
ponding global array. The communication costs for this step are (9(02V 2), yet in
form of (9 (O V 2) messages, since the j-vectors of the required (jalib) ERIs are widely
scattered over the global array. In order to reduce the number of messages, and
hence latency, as many of the (jalib) ERIs as possible are prefetched and stored in
a local buffer, using a one-sided "gather" operation, which bundles requests that
address the same node. The computational costs are of the same order as the
communication costs for this step, which is not favourable. However, since anti-
symmetrization takes only a small fraction of the overall time (< 5%), the overall
performance of the code is not severly hampered.

4 Results and discussion

In this section, preliminary timing results on the parallel performance of the
algorithm are presented and discussed. As a test case we have chosen phenanthrene
again, this time in a larger basis, i.e. 762 primitives, contracted to 412 basis
functions. For molecular systems of this size, integral direct methods start to
become the only possible route; hence, this test case may have some practical
significance, although it is still small enough to be well suited for scalability
measurements. The number of symmetry-unique shells for this system is 31,
forming 496 individual tasks.

All calculations reported here were performed on an IBM SP2 with 48 nodes.
The processors run at a clock speed of 66.7 MHz, resulting in a peak performance
of 266 MFlop/s for each node. Communication bandwidth and latency are nom-
inally 35 Mbyte/s and 40 ~Ls, respectively. All calculations were run under AIX 4.1,
with the GA tools linked directly to the native MPI library. The SCF wave function
was generated using a replicated-data parallel SCF program (distributed genera-
tion of the Fock matrix) [271, built directly on top of MPI. One feature of this SCF
code is that diagonalization of the Fock matrix is avoided, i.e. replaced by orbital
rotations, connected to a second-order (BFGS) update scheme [42]. This reduces
the sequential backbone of the algorithm considerably.

Table 3 compiles average wall clock times of the three different variants of the
parallel algorithm discussed in the previous section, i.e. (a) with no transpose of the
Q3 3L-subblocks; (b) with a separate transpose after the whole set of Q3 integrals is
produced; and (c) with an immediate transpose on the fly, after each segmented Q3
step. The measured times are split up into the contributions of the individual steps
of the calculation (i.e. ERI generation, Q1 step, etc.). The corresponding parallel
speedups ~t6/~32 and the total elapsed times tto~ are also included, for convenience.
From these, it is evident that algorithm (b) shows the best performance. Note that
the time spent for the transpose is included in /'Q4. Actually, it is the major
contribution to tQ4, since the real Q4 step is completely local, and takes only 7 (16p)
and 4 (32p) seconds, the same as for algorithm (c).

For algorithm (a), tto t is somewhat longer, and it also shows an inferior speedup.
This is ascribed to the more expensive Q4 step, which involves communication
costs, scaling linearly with the number of processing nodes p, as discussed in the
previous section. Furthermore, there is also some imbalance in the load for the Q4
step, as can be seen from the non-zero timings for the second synchronization

30 M. Schlitz, R. Lindh

Table 3. Wall clock times (in s) for the different parallel versions of the integral direct MP2
algorithm for a calculation on phenanthrene (762 primitives, 412 contracted functions, 94 correlated
electrons)"

No Q3 transpose Q3 transpose after Q3 step Q3 transpose during Q3 step

16p 32p t16/t32 16p 32p tit~t32 16p 32p tlt/t32

h~, 1843 922 2.00 1844 922 2.00 1844 922 2.00
tQ1 190 95 2.00 190 95 2.00 190 95 2.00
~2 30 15 2.00 30 15 2.00 30 15 2.00
{03 228 115 1.98 228 115 1.98 916 471 1.94
~y.,1 32 43 26 31 76 74
{Q~ 183 111 1.64 56 41 1.37 7 4 1.61
~y~,~2 26 18 0 0 0 0
~sym 65 52 1.27 42 24 1.77 42 24 1.77

t,o~ 2685 1443 1.86 2510 1298 1.93 3287 1703 1.93

ANO contracted as H(7s3p/3s2p), and C(lOs6p3d/4s3p2d) [-45] (real spherical representation)

point. On the other hand, the maximal memory requirements for (a) are somewhat
smaller than for (b), since for (b), two distributed Q3 blocks have to be kept
simultaneously in core (for the transpose), whereas for (a) and for (c), only one Q3
plus one Q4 block are needed (for the Q4 step). This is especially pronounced for
minimal basis sets, where the Q3 block can be twice as large as the Q4 block.

For algorithm (c), considerably longer tto t were measured, although a similar
speedup was obtained as for algorithm (b). Comparing {Q3 for (a)-(c), it is evident,
that the higher costs of the "scatter" operation (vs. blockwise "accumulate"),
together with the loss in data locality, increase the costs of the Q3 step dramat-
ically, i.e. by about a factor of four. An intrinsic inscalability of all the algorithms
presented here manifests in t-syncl, the time spent idle at the first synchronization
point. {~y~cl reflects the "granularity" of the tasks, hence the load imbalance in the
task assignment. The ratio {~ynol/ttot naturally grows with increasing p, and obvi-
ously, there is an upper limit for a given problem size where a further increase ofp is
no longer meaningful. Similar load-balancing problems were also observed by
Wong et al. [36] for their algorithm. For small, highly symmetric systems with
large basis sets, this problem becomes more serious, since there are fewer tasks of
larger size in these cases. It might be advantageous then to decontract some shells,
as described in the previous section, in order to split some of the largest tasks into
smaller pieces. This will improve the load balance, yet at the expense of efficiency in
the evaluation of the ERIs.

In order to illustrate the cumulative effect of exploiting both the increased
aggregate memory and compute power that are obtained by incrementing the
number of computational nodes, a series of calculations on the phenanthrene
molecule was performed, varying the number of nodes between 2 and 48. Algo-
rithm (b), i.e. with a separate transpose after completion of the Q3 step was used.
Table 4 compiles the measured wall clock times, the number of passes through the
integral list, and the resulting speedup factors relative to two nodes. A single-node
calculation still is possible, although it would take t6 passes and an estimated
elapsed time of 130 h. Due to this excessively large elapsed time this calculation was
not performed. However, assuming the same speedup from 1 to 2 nodes, as was

An integral direct, distributed data, parallel MP2 algorithm 31

Table 4. Wall clock times (in s) and speedup factors relative to two
nodes, measured for the parallel algorithm with the Q3 transpose
@er completion of the Q3 step (algorithm (b)). Calculations on
phenanthrene (762 primitives, 412 contracted functions, 94 corre-
lated electrons) were performed using 2-48 nodes, each with 12
MWords (double precision) of memory. For basis set specification
see Table 3

Nodes relapse d 7~ Passes Speedup

2 122238 8 1.00
4 32045 4 3.81
8 8730 2 14.00

16 2510 1 48.69
32 1315 1 92.97
39 1109 1 110.25
48 884 1 138.21

observed fi'om 2 to 4 nodes (3.81), the speedup on 48 nodes relative to a single node
is estimated to 526.8. Using 16 nodes and more, only a single integral pass is
required. Hence, beyond this limit, the algorithm scales linearly at best. The parallel
efficiency on 48 vs. 16 nodes is 95%. Thus, even in the linear regime, our imple-
mentat ion still shows good performance. However, for a system of moderate size
(ca. 400 basis functions), there are probably no practical reasons to go beyond
48 nodes, since the elapsed time is already less than 15 rain. The situation may be
different though, if the algorithm is used in the context of an MCSCF program,
where an integral t ransformation is required for each iteration.

In Fig. 6 the observed speedup factors from Table 4 are plotted vs. the number
of nodes, and compared to a linear speedup curve. On 48 nodes, the observed
speedup is 5.8 times larger than linear speedup (with a reference of two nodes).
Table 4 and Fig. 6 both demonstrate clearly, that speedup factors far beyond linear
speedup (i.e. superIinear speedup) can be obtained, if both the aggregate memory
and the compute power of an M P P system are exploited efficiently.

5 Conclusions

In this paper, we described a scalable, distributed-data parallel algorithm for
integral direct four-index transformation. Our implementation was used in the
context of an MP2 program, but is easily adapted for use in e.g. an MCSCF
program. Molecular symmetry up to the D2h point group is exploited. Calculations
in excess of 1000 basis functions should be possible within reasonable elapsed
times. The largest calculations performed so far comprised 1160 primitives contrac-
ted to 640 basis functions, and 74 correlated electrons. On 48 SP2 nodes, this
calculation took 12 281 s wall clock, and three integral passes [43J.

Formally, the algorithm scales as (9(0N4), where O and N denote the number
occupied (non-frozen) MOs, and the number of basis functions, respectively.
Nevertheless, in practice, the generation of the ERIs dominates the calculation,
thus the large prefactor of the flop count (9(N 4) for ERI evaluation outweighs
the (~(ON 4) dependence of the first transformation step. Hence, improvements in
the integral evaluation will have significant effects on the overall-performance of

32 M. Schiitz, R. Lindh

÷

150

Z
100

O

.=~

50

150

50

0
0 50

Number of Nodes

100

0
0 10 20 30 40 50

Number of Nodes

Fig. 6. Observed and linear speedup relative to two nodes, in the range of 2 and 48 SP2 nodes. The filled
diamonds correspond to the timings, compiled in Table 4. The second graph displays the same data, but
with a more appropriate scaling of the ordinate than the first one, which has the conventional scaling
and yields the linear speedup line at 45 °

the implementation. The formal communication costs a r e (9(nzO2VN), where nz
and V denote the number of symmetry-unique shells, and the number of virtual
MOs, respectively. However, exploitation of data locality renders substantial
savings in communication time. The communication framework is built on top of
"Global Arrays", which simplifies the distribution of data considerably. Moreover,
one-sided access to remote data by use of interrupt-driven message passing, as
implemented in "Global Arrays", means a significant performance advantage,
compared to conventional message passing. Some care has to be taken if global
"scatter" and "gather" operations are used, since these are considerably more
expensive than blockwise "get", "accumulate" and "put" operations.

Our algorithm exhibits high parallel efficiency. For a molecular system with 412
basis functions, speedup factors far beyond linear speedup were observed. Thus, the
parallel execution of the calculation renders not only shorter wall clock times but
also considerable savings in CPU time as compared to single-node execution.
This superlinear speedup is a result of efficient use of both the compute power and
the aggregate memory of the MPP system, where the latter reduces the number of
necessary passes through the AO integral list. In the linear regime, i.e. when a single
pass is sufficient, our implementation still exhibits good (near linear) performance.
Other quantum chemical methods are likely to have a similar potential for
distributed-data parallel algorithms, since the available memory, as in the case of
direct MP2, is in many cases at least partly connected to the efficiency of the
algorithm.

An integral direct, distributed data, parallel MP2 algorithm 33

Acknowledgements. The authors would like to thank Dr. Alistair RendetI and co-authors for a prelimi-
nary version of their manuscript. This study was supported by a grant from the Swedish Natural Science
Research Council (NFR), and by IBM Sweden under a joint study contract. Granted computer time
from the Parallel Computer Center (PDC) at the Royal Institute of Technology (KTH), Stockhlom, is
gratefully acknowledged.

References

1. Price SL, Harrison RJ, Guest MF (1989) J Comput Chem 10:552
2. Scuseria GE (1991) Chem Phys Lett 176:423
3. Cioslowski J (1991) Chem Phys Lett 181:68
4. H~iser M, Alml6f J, Scuseria GE (1991) Chem Phys Lett 181:497
5. Scuseria GE (1995) Chem Phys Lett 243:193
6. Furlani TR, King HF (i995) Proc quantum mechanical simulation methods for studying biological

systems. Centre De Physique Des Houches, Les Houches, France
7. Foster IT, Tilson JL, Wagner AF, Shepard RL, Harrison RJ, Kendall RA, Littlefield RJ (1996)

J Comput Chem 17:109
8. Harrison R J, Guest MF, Kendall RA, Bernholdt DE, Wong AT, Stave M, Anchell JL, Hess AC,

Littlefield RJ, Fann GL, Nieplocha J, Thomas GS, Etwood D (1996) J Comput Chem 17:124
9. Koch H, Christiansen O, Kobayashi R, Jorgensen P, Helgaker T (I994) Chem Phys Lett 228:233

10. Klopper W, Noga J (1995) J Chem Phys 103:6127
11. Koch H, S/mchez de Mergts A, Helgaker T, Christiansen O (1996) J Chem Phys 104:4157
12. AlmlSf J (1995) In: Yarkony DR (ed.), Modern electronic structure theory, Advanced Series in

Physical Chemistry, Vol. 2. World Scientific, Singapore, p 110
13. AhnlSf Jr J, Faegri K, KorseI1 K (1982) J Comput Chem 3:385
t4. Taylor PR (1987) Int J Quantum Chem 31:521
15. Frisch M, Ragazos IN, Robb MA, Schlegel HB (1992) Chem Phys Lett t89:524
16. S~ebo S, AlmlSf J (1989) Chem Phys Lett 154:83
17. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503
18. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275
19. MPI: A Message-Passing Interface standard. (1994) MPI University of Tennessee
20. Dupuis M, Watts JD (1987) Theor Chim Acta 71:91
21. Guest MF, Sherwood P, van Lenthe J (1993) Theor Chim Acta 84:423
22. Brode S, Horn H, Ehrig M, Moldrup D, Rice J, Ahlrichs R (1993) J Comput Chem 14:1142
23. Feyereisen MW, Kendall RA (1993) Theor Chim Acta 84:289
24. Feyereisen MW, Kendall RA, Nichols J, Dame D, Golab JT (1993) J Comput Chem 14:818
25. Ltithi HP, AImlSf J (1993) Theor Chim Acta 84:443
26. Liithi HP, Mertz JE, Feyereisen MW, Alml6f J (1992) J Comput Chem 13:160
27. Schlitz M, unpublished.
28. CIementi E, Corongiu G, Detrich J, Chin S, Domingo L (I984) Int J Quantum Chem: Quantum

Chem Symp 18:601
29. FurIanJ TR, King HF (1995) J Comput Chem 16:91
30. Harrison RJ, Shepard R (1994) Ann Rev Phys Chem 45:623
31. Mfirquez AM, Dupuis M (1995) J Comput Chem 16:395
32. Bernholdt DE, Harrison RJ (i995) J Chem Phys 102:9582
33. Schiitz M, Ftilscher MP, Lindh R, An integral-direct, distributed parallel CASSCF algorithm (to be

published).
34. Nieplocha J, Harrsion RJ, Littlefield RJ (1994) Global Arrays: A portable "shared memory"

programming model for distributed memory computers. IEEE, New York, p 330
35. Bernholdt DE, April E, Frtichtl HA, Guest MF, Harrison RJ, Kendall RA, Kutteh RA, Long X,

Nicholas JB, Nichols JA, Taylor HL, Wong AT, Fann GL, Littlefield R J, Nieplocha J (1995) Int J
Quantum Chem: Quantum Chem Symp 29:475

36. Wong AT, Harrison RJ, Rendell AP (1996) Theor Chim Acta 93:317
37. Werner HJ, Meyer W (1980) J Chem Phys 73:2342

34 M. Schfitz, R. Lindh

38. Taylor PR (1992) In: Roos BO (ed.), Lecture Notes in Quantum Chemistry, European Summer
School in Quantum Chemistry, Lecture Notes in Chemistry, Vol. 58. Springer, Berlin, p 89

39. Lindh R, Ryu U, Liu B (1991) J Chem Phys 95:5889
40. Alml6f J, Taylor PR (1987) J Chem Phys 86:4070
41. Roos BO (1980) Int J Quantum Chem: Quantum Chem Symp 14:175
42. Fischer TH, Almt6f J (1992) J Chem Phys 96:9768
43. Schlitz M, Lindh R (to be published).
44. Widmark P-O, Persson BJ, Roos BO (1991) Theor Chim Acta 79:419
45. Pierloot K, Dumez B, Widmark P-O, Roos BO (1995) Theor Chim Acta 90:87

